Enhancement effects of methanol on the reactivity for methane partial oxidation in the gas phase reaction of $CH_4-O_2-NO_2$

Yonghong Teng,*a Yoichi Yamaguchi,^b Tetsuya Takemoto,^a Lianxin Dai,^a Kenji Tabata^a and Eiji Suzuki^a

^a Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto, 619-0292. Japan. E-mail: teng@rite.or.jp

^b Kansai Research Institute (KRI), Kyoto Research Park, Science Center Bldg. 17, Chudoji-Minami-machi, Shimogyo-ku, Kyoyo, 600-8813 Japan

Received (in Cambridge, UK) 6th December 1999, Accepted 31st January 2000

The partial oxidation of methane in the gas phase reaction of CH_4 - O_2 - NO_2 was enhanced with the addition of a small amount of methanol; the selectivity of methanol at the same level of CH_4 conversion was enhanced in the presence of methanol which showed this effect exclusively in the presence of NO_2 .

Methanol is a desirable product in the partial oxidation of methane. Recently, we found high yield methanol formation at 808 K under atmospheric pressure in the gas phase reaction of CH_4-O_2 upon the addition of a small amount of NO_x $(x = 1, \overline{2})$.^{1,2} The transition barrier energy of hydrogen atom abstraction from CH₄ by NO₂ was lower than that by O₂.^{3,4} This brought about the enhancement effect of NO₂ on the reactivity of methane in CH₄–O₂–NO₂. Since successive oxidation of the produced methanol has been reported at high temperatures for the CH₄-O₂ gas phase reaction,^{5,6} the successive oxidation of methanol could also occur in the $CH_4-O_2-NO_x$ gas phase reaction. The initial hydrogen atom abstraction is the first step of successive oxidation of methanol that probably initiates radical chain reactions to enhance methane partial oxidation, since Burch and co-workers⁵ reported that the addition of C₂H₆ lowered the reaction temperature by ca. 50 K at the same conversion of CH_4 for the gas phase reaction of CH_4 –O₂. On the other hand, it was found in our previous study that the selectivity of the produced methanol was scarcely affected by a change of space velocity at a given temperature.^{1,2,4} This indicates that methanol could be a fairly stabilized product in the gas phase. In addition, gaseous additives have been examined under high pressure so far,7-9 but an enhancement effect of methanol was not found. Therefore it is important to clarify the behavior of methanol in the gas phase reaction of CH₄–O₂–NO₂. In this study, a small amount of methanol was added to the CH₄-O₂-NO₂ system to investigate its effects on the partial oxidation of methanol in the gas phase.

The reaction was carried out with using a test gas (CH₄: 28%, O₂: 14%, NO₂: 0.5%, He: 57.3 or 57.5%, CH₃OH: 0 or 0.16%). A quartz tube (7 mm i.d.) was used as a reactor and the length of heated reaction zone was 200 mm. The temperature was measured with a thermocouple attached on the outside of the reactor. Products were analyzed with two gas chromatographs. The carbon balance before and after the reaction exceeded 98%. Each reaction was performed for 30 min under each of the conditions and then the products were analyzed. All experimental data shown here were shown to be reproducible. Conversion and selectivities were calculated as follows (unit is mol): CH₄ conversion = (initial CH₄ – final CH₄)/initial CH₄; selectivity of a product = product/reacted CH₄; selectivity of methanol = total methanol/reacted CH₄.

Fig. 1 shows CH₄ conversion in each different reaction gas mixture as a function of reaction temperature. The temperature at the level of 10% CH₄ conversion is lowered by *ca.* 30 K (827 K) with addition of methanol (0.16%) to CH₄–O₂–NO₂. CH₄ conversion was scarcely observed at 827 K for both CH₄–O₂ and CH₄–O₂–CH₃OH systems. These differences indicate that

the decrease of reaction temperature is derived from the presence of both CH_3OH and NO_2 in the reaction mixture. The enhancement effects of CH_3OH are clearly seen on an ON-OFF experiment for the supply of methanol (Fig. 2). An increase of reaction temperature after the addition of methanol was observed but amounted to <3 K in the center of the reactor.

On varying the methanol concentration, it was found that 0.016% CH₃OH was the lower limit for which CH₄ conversion was enhanced.

The selectivity of CH₃OH for the reaction in the presence of methanol is higher than that without methanol in the lower conversion region (Table 1). The selectivity of CH₂O in the system CH₄–O₂–NO₂–CH₃OH had somewhat smaller values in the same region. The selectivity of CH₃OH in the presence of methanol exceeded that in the absence of CH₃OH for the regions of CH₄ conversion shown in Table 1.

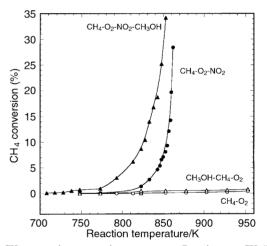


Fig. 1 CH₄ conversion *vs.* reaction temperature. Reaction gas: CH₄(28%)–O₂(14%)–NO₂(0.5%)–He(57.3%)–CH₃OH(0.16%) (▲), CH₄(28%)–O₂(14%)–NO₂(0.5%)–He(57.5%) (●), CH₄(28%)–O₂(14%)–He(57.8%)–CH₃OH(0.16%) (△), CH₄(28%)–O₂(14%)–He(58%) (○).

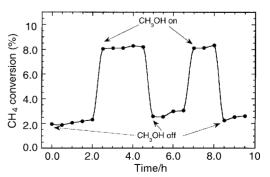


Fig. 2 The enhancement effect of CH_3OH on CH_4 conversion in $CH_4-O_2-NO_2$. 0.16% CH_3OH was fed into the reaction gas consisting of $CH_4(28\%)-O_2(14\%)-NO_2(0.5\%)-He(57.5\%)$.

Table 1 The effects of methanol addition on methane partial oxidation in the presence of NO2^a

	T/K	CH ₄ conversion (%)	Selectivity (%)				
			НСНО	CH ₃ OH	CH ₃ NO ₂	СО	CO_2
Without CH ₃ OH	831	2.3	38.0	11.7	10.8	33.5	6.0
	846	5.6	27.3	13.1	8.2	48.2	3.2
	851	8.1	19.8	13.1	8.0	55.9	3.1
	857	12.1	11.3	11.9	6.2	66.7	3.9
With CH ₃ OH	788	$2.3 (0.3)^{b}$	29.1	18.8	11.7	35.1	5.3
	810	$5.6 (0.7)^{b}$	25.0	17.1	11.9	42.3	3.7
	820	$8.1 (2.3)^b$	19.6	15.7	11.1	50.4	3.2
	830	$12.1 (5.6)^{b}$	14.0	14.0	7.4	60.7	3.9

It is of note that >99% methanol was oxidized to CO and CO₂ in the CH₃OH–O₂–NO₂ system in the absence of methane below 750 K. Since all of the added methanol was completely oxidized up to 750 K, the obtained methanol in the CH₄–O₂–NO₂–CH₃OH system was assumed to be produced through the partial oxidation of methane. This indicates that the enhancement of reactivity of CH₄ in CH₄–O₂–NO₂–CH₃OH above 750 K was caused by reaction between NO₂ and CH₃OH.

In previous papers, we suggested reaction pathways to form C_1 -oxygenates in the gas phase reaction of CH_4 - O_2 - NO_2 .¹⁻⁴ The rate-determining step is hydrogen abstraction from methane with an activation energy of 37.6 kcal mol⁻¹ at 800 K. The lowering of the initial reaction temperature upon CH_3OH addition indicated the presence of other lower barrier reaction pathways for the dissociation of methane. Furthermore, the enhancement of CH_4 conversion indicated the presence of radical chain reactions. We considered the most probable reaction between CH_3OH and NO_2 [eqn. (1)]:

$$CH_3OH + NO_2 \rightarrow CH_2OH + HNO_2$$
 (1)

Our theoretically obtained value for the activation energy of eqn. (1) was 28.4 kcal mol⁻¹ at 800 K calculated using the Gaussian94 *ab initio* program package and was close to that reported by Bromly *et al.*¹⁰ The produced CH₂OH was assumed to react easily with O₂ to produce formaldehyde [eqn. (2)]:

$$CH_2OH + O_2 \rightarrow CH_2O + HO_2$$
 (2)

This HO_2 could then react with CH_4 [eqn. (3)]:

$$CH_4 + HO_2 \rightarrow CH_3 + H_2O_2 \tag{3}$$

Since the reported¹⁰ activation energy of eqn. (3) was 24.6 kcal mol^{-1} and is lower than 37.6 kcal mol^{-1} for the activation

energy of hydrogen abstraction from methane, we considered that this difference lowered the commencement temperature of CH_4 conversion.

The higher selectivity of produced methanol is explained by assuming that the subsequent oxidation of methanol is retarded under the reaction conditions.

We acknowledge financial support of the New Energy and Industrial Technology Development Organization (NEDO). Y. T. was supported by a Fellowship from NEDO.

Notes and references

- 1 Y. Teng, F. Ouyang, L. Dai, T. Karasuda, H. Sakurai, K. Tabata and E. Suzuki, *Chem. Lett.*, 1999, 991.
- 2 Y. Teng, H. Sakurai, K. Tabata and E. Suzuki, *Appl. Catal. A*, 1999, **190**, 283.
- 3 Y. Yamaguchi, Y. Teng, S. Shimomura, K. Tabata and E. Suzuki, J. Phys. Chem. A, 1999, **103**, 8272.
- 4 K. Tabata, Y. Teng, Y. Yamaguchi, H. Sakurai and E. Suzuki, J. Phys. Chem. A, 2000, in press.
- 5 T. R. Baldwin, R. Burch, G. D. Squire and S. C. Tsang, *Appl. Catal. A*, 1991, **74**, 137.
- 6 R. Burch, G. D. Squire and S. C. Tsang, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 3561.
- 7 J.-W. Chun and R. G. Anthony, Ind. Eng. Chem. Res., 1993, 32, 788.
- 8 N. R. Hunter, H. D. Gesser, L. A. Morton and P. S. Yarlagadda, *Appl. Catal.*, 1990, **57**, 45.
- 9 A. S. Chellappa, S. Fuangfoo and D. S. Viswanath, *Ind. Eng. Chem. Res.*, 1997, **36**, 1401.
- 10 J. H. Bromly, F. J. Barnes, S. Muris, X. You and B. S. Haynes, *Combust. Sci. Technol.*, 1996, **115**, 259.

Communication a909587j